Influence of CO2 observations on the optimized CO2 flux in an ensemble Kalman filter

نویسندگان

  • J. Kim
  • H. M. Kim
چکیده

In this study, the effect of CO2 observations on an analysis of surface CO2 flux was calculated using an influence matrix in the CarbonTracker, which is an inverse modeling system for estimating surface CO2 flux based on an ensemble Kalman filter. The influence matrix represents a sensitivity of the analysis to observations. The experimental period was from January 2000 to December 2009. The diagonal element of the influence matrix (i.e., analysis sensitivity) is globally 4.8 % on average, which implies that the analysis extracts 4.8 % of the information from the observations and 95.2 % from the background each assimilation cycle. Because the surface CO2 flux in each week is optimized by 5 weeks of observations, the cumulative impact over 5 weeks is 19.1 %, much greater than 4.8 %. The analysis sensitivity is inversely proportional to the number of observations used in the assimilation, which is distinctly apparent in continuous observation categories with a sufficient number of observations. The time series of the globally averaged analysis sensitivities shows seasonal variations, with greater sensitivities in summer and lower sensitivities in winter, which is attributed to the surface CO2 flux uncertainty. The time-averaged analysis sensitivities in the Northern Hemisphere are greater than those in the tropics and the Southern Hemisphere. The trace of the influence matrix (i.e., information content) is a measure of the total information extracted from the observations. The information content indicates an imbalance between the observation coverage in North America and that in other regions. Approximately half of the total observational information is provided by continuous observations, mainly from North America, which indicates that continuous observations are the most informative and that comprehensive coverage of additional observations in other regions is necessary to estimate the surface CO2 flux in these areas as accurately as in North America.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A regional carbon data assimilation system and its preliminary evaluation in East Asia

In order to optimize surface CO2 fluxes at grid scales, a regional surface CO2 flux inversion system (Carbon Flux Inversion system and Community Multi-scale Air Quality, CFI-CMAQ) has been developed by applying the ensemble Kalman filter (EnKF) to constrain the CO2 concentrations and applying the ensemble Kalman smoother (EnKS) to optimize the surface CO2 fluxes. The smoothing operator is assoc...

متن کامل

Toward reliable ensemble Kalman filter estimates of CO2 fluxes

[1] The use of ensemble filters for estimating sources and sinks of carbon dioxide (CO2) is becoming increasingly common, because they provide a relatively computationally efficient framework for assimilating high-density observations of CO2. Their applicability for estimating fluxes at high-resolutions and the equivalence of their estimates to those from more traditional “batch” inversion meth...

متن کامل

Estimates of European uptake of CO2 inferred from GOSAT XCO2 retrievals: sensitivity to measurement bias inside and outside Europe

Estimates of the natural CO2 flux over Europe inferred from in situ measurements of atmospheric CO2 mole fraction have been used previously to check top-down flux estimates inferred from space-borne dry-air CO2 column (XCO2) retrievals. Several recent studies have shown that CO2 fluxes inferred from XCO2 data from the Japanese Greenhouse gases Observing SATellite (GOSAT) and the Scanning Imagin...

متن کامل

Title of Document : CARBON CYCLE DATA ASSIMILATION USING A COUPLED ATMOSPHERE - VEGETATION MODEL AND THE LOCAL ENSEMBLE TRANSFORM KALMAN FILTER

Title of Document: CARBON CYCLE DATA ASSIMILATION USING A COUPLED ATMOSPHEREVEGETATION MODEL AND THE LOCAL ENSEMBLE TRANSFORM KALMAN FILTER Ji Sun Kang, Doctor of Philosophy, 2009 Directed By: Professor Eugenia Kalnay Department of Atmospheric and Oceanic Science We develop and test new methodologies to best estimate CO2 fluxes on the Earth’s surface by assimilating observations of atmospheric ...

متن کامل

A global carbon assimilation system using a modified ensemble Kalman filter

A Global Carbon Assimilation System based on the ensemble Kalman filter (GCAS-EK) is developed for assimilating atmospheric CO2 data into an ecosystem model to simultaneously estimate the surface carbon fluxes and atmospheric CO2 distribution. This assimilation approach is similar to CarbonTracker, but with several new developments, including inclusion of atmospheric CO2 concentration in state ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014